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Large-scale benchmarks provide a solid foundation for the development of action analytics. Most of the pre-

vious activity benchmarks focus on analyzing actions in RGB videos. There is a lack of large-scale and high-

quality benchmarks for multi-modal action analytics. In this article, we introduce PKU Multi-Modal Dataset

(PKU-MMD), a new large-scale benchmark for multi-modal human action analytics. It consists of about 28,000

action instances and 6.2 million frames in total and provides high-quality multi-modal data sources, including

RGB, depth, infrared radiation (IR), and skeletons. To make PKU-MMD more practical, our dataset comprises

two subsets under different settings for action understanding, namely Part I and Part II. Part I contains 1,076

untrimmed video sequences with 51 action classes performed by 66 subjects, while Part II contains 1,009

untrimmed video sequences with 41 action classes performed by 13 subjects. Compared to Part I, Part II is

more challenging due to short action intervals, concurrent actions and heavy occlusion. PKU-MMD can be

leveraged in two scenarios: action recognition with trimmed video clips and action detection with untrimmed

video sequences. For each scenario, we provide benchmark performance on both subsets by conducting dif-

ferent methods with different modalities under two evaluation protocols, respectively. Experimental results

show that PKU-MMD is a significant challenge to many state-of-the-art methods. We further illustrate that the

features learned on PKU-MMD can be well transferred to other datasets. We believe this large-scale dataset

will boost the research in the field of action analytics for the community.
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1 INTRODUCTION

Action analytics in videos is an intensively studied research area, with broad applications in
human-machine interaction, video surveillance, and robotics. In recent years, the success of deep
learning has made data-driven learning methods get ahead with superior performance for human
action analytics. Many efforts, including advanced methods [10, 20, 49, 52, 69, 77, 83] and bench-
marks [3, 27, 47, 54], have been made to boost the research in this field.

A key category of action analytics methods aims at analyzing human actions in RGB videos [10,
24, 39, 52, 69, 83]. To facilitate the research in this branch, several famous large-scale datasets
have been collected [3, 47]. For action detection, ActivityNet [3] is a superior RGB video dataset
gathered from Internet media like YouTube with well-annotated labels and boundaries. For action
recognition, UCF-101 [54] and HMDB-51 [27] have been popular benchmarks and have served the
community well for many years. However, the quantities and variations of these two datasets limit
their contributions to action recognition models based on deep learning. Kinetics [5] is a successor
to the previous standard datasets, which is large enough to train deep networks from scratch and
challenging enough to act as a performance benchmark.

In recent years, with the advent of affordable color-depth sensing cameras, such as RealSense
and Kinect [23, 81], there is an increasing amount of visual data containing multi-modalities (e.g.,
RGB, depth, infrared radiation (IR), skeletons, etc.). Different modalities contain modal-specific
characteristics and can be utilized to adapt to different application scenarios. RGB data are the
most easily accessible in our daily life and are able to provide appearance information. Compared
to conventional RGB videos, depth information is invariant to color and texture changes and less
sensitive to illumination variations, which can help light up the accuracy of human action analysis.
Heat-sensitive IR data, however, are more accessible in night-vision cameras. It is believed that
the exploitation of IR information can greatly broaden the application scenarios of human action
analytics, especially in night surveillance. Three-dimensional (3D) skeletons are intrinsic high-
level representations that are robust to viewpoints, illumination, and cluttered backgrounds. They
are comprehensive for summarizing a series of human dynamics in the videos. Besides, the low
dimension of 3D skeleton data makes it possible to achieve real-time computing.

Due to the aforementioned advantages of different modalities, many efforts have been devoted
to exploring action analytics based on depth information [76], IR [25], or skeletons [11]. In the
meantime, inspired by the intuition that different modalities are capable of providing comple-
mentary information, multi-modal action analytics has attracted much attention [18, 38, 51, 73].
However, due to the lack of large-scale and high-quality benchmarks, there are not sufficient data
to exploit the potential of deep models. To the best of our knowledge, existing action benchmarks
have limitations in the following aspects.
• Limitation in data modalities: As mentioned above, different modalities intuitively capture

features from distinctive aspects and provide complementary information. Nevertheless, most cur-
rent datasets focus mainly on one modality of action representations. A few of them contain RGB,
depth, and skeleton information [8, 32, 40, 55]. However, the data qualities are not so satisfactory,
i.e., the misalignment of multi-modal data and the low resolution of depth maps. Besides, most
datasets do not provide IR data. However, the easy access of IR data from night-vision cameras
makes IR-based action analytics in demand to facilitate practical applications.
• Shortage in large-scale action analytics datasets: The recent action analytics methods are

mainly based on data-hungry deep learning models. Current datasets are simply not large enough
to train the network from scratch, especially for modalities like depth, IR, and skeletons. There is
no doubt that more configuration diversities could enlarge the intra-class difference and narrow
the inter-class variations. Larger datasets usually make the issues even more challenging and will
enable a new generation of action analytics algorithms.
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Fig. 1. Overview of the PKU-MMD Dataset. Our dataset consists of two subsets: Part I and Part II. Compared

with Part I, in which the viewpoints are from front, Part II provides surrounding viewpoints, and thus there

are more occlusion. Besides, the action intervals are shorter and concurrent actions are taken into account

in Part II.

Though the NTU RGB+D dataset [49] is a famous large-scale multi-modal dataset, it only con-
tains trimmed videos for action recognition. There is a lack of large-scale datasets with untrimmed
videos to facilitate multi-modal action detection, which also plays a key role in action analytics.
In this article, we develop a new large-scale multi-modal human activity dataset (PKU-MMD) that
contains untrimmed videos and can be utilized for action recognition and detection.1 To make
our dataset more practical, we consider different settings in the data collection process, which
then lead to different levels of difficulty (i.e., easy and hard) in action understanding. As shown
in Figure 1, our dataset includes two subsets. Both subsets are recorded from multiple viewpoints
and provide synchronous multi-modal data, including RGB frames, depth maps, IR information,
and skeletons. The previous conference paper [36] mainly discusses the benchmark performance
on action analytics with skeleton data from Part I, which consists of 1,076 untrimmed sequences
with 51 action classes performed by 66 subjects. In this article, we extend the dataset with Part II,
which contains additional 1,009 untrimmed sequences with 41 action classes performed by 13 ac-
tors. Compared to Part I, there is a larger viewpoint variation in Part II with surrounding cameras.
Besides, action intervals are shorter and concurrent actions are taken into account, leading to less
clear action boundaries. And the occlusion caused by viewpoints results in heavier skeleton noises.
Thus, Part II is more challenging for action understanding. In experiments, we explore multi-modal
action analytics with all the modalities provided. A comparison study of different action analytics
methods with different modalities is given. We also demonstrate that PKU-MMD can be utilized to
support action understanding on other datasets. Our contributions can be summarized as follows:

• We build the currently largest multi-modal dataset PKU-MMD for action analytics with
sufficient variations in viewpoints, subjects, and action types. Our dataset consists of two
subsets under different settings and with different levels of difficulty in action understand-
ing. Besides, our dataset can be utilized for trimmed action recognition and untrimmed
action detection.

1Our dataset can be found at https://struct002.github.io/PKUMMD/.
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• We conduct extensive and systematic experiments to quantitatively compare several ac-
tion recognition and detection methods. Our evaluation and analysis demonstrate that our
dataset is a great challenge to many state-of-the-arts for action analytics.

• We analyze the feasibility of multi-modal action recognition and detection. We show that
each modal data contributes to action analytics, while their fusion results achieve further
remarkable performance.

• We show that the features learned on PKU-MMD can be well transferred and utilized to
support action understanding on other datasets through a cross-dataset study.

The rest of this article is organized as follows. In Section 2, we review the development of action
analytics and popular datasets. In Section 3, we introduce PKU-MMD in detail and explain the
evaluation protocols. Then we show our benchmarks and further analysis on action recognition
and detection in Section 4. Concluding remarks are finally given in Section 5.

2 RELATED WORK

In this section, we summarize the development of action analytics and then briefly introduce a
series of approaches and benchmarks for multi-modal action analysis. For a more extensive con-
clusion of human action analytics, we refer to corresponding survey papers [4, 80].

2.1 Development of Action Analytics

From the topics to be addressed, action analytics can be categorized into action recognition and ac-
tion detection. Action recognition aims to label a trimmed video clip, while action detection refers
to not only recognizing but localizing actions within an untrimmed video. Early human action
analytics mainly focuses on action recognition, in which extracting robust video representations
is the key issue. Traditional methods employ hand-crafted descriptors for video representations.
As a kind of low-level video representation, densely tracking points in the optical flow field with
more features like Histogram of Oriented Gradient (HOG), Histogram of Flow (HOF), and Motion
Boundary Histograms (MBH) [43, 59] achieve good performance in action recognition. And there
are also many works on middle video representations. A spatio-temporal latent variable model is
developed in Reference [46] to form clusters of trajectories. Wang et al. [65] defined motionlet as a
middle-level representation, which is a spatio-temporal part with coherent appearance and motion
features. In Reference [21], spatio-temporal patches are mined according to their discriminative
and representative properties. To create a more dominant and compact representation, Zhu et al.
[84] proposed a two-layer structure to automatically exploit a mid-level video feature. In recent
years, deep neural networks have been exploited for action recognition [10, 52, 69, 73]. These ap-
proaches automatically learn robust video representations directly from raw data. Convolutional
neural networks (CNN) are usually constructed to model spatial features [52, 69] and recurrent
neural networks (RNN) have been utilized to handle temporal relations [10, 73].

For action detection, early methods utilize sliding-window schemes [50, 64]. These methods
usually have low computational efficiency or unsatisfactory localization accuracy due to the over-
lapping design and unsupervised localization scheme. More recent works employ action proposal
approaches [12, 22, 67], which are more efficient in retrieving temporal segments. The meth-
ods mentioned above are designed for offline action detection [50, 57, 71], which generate action
boundaries after observing the entire video sequence. There are some works [17, 33, 48, 79] recog-
nizing and locating actions on the fly before completion of the action. Hoai et al. [17] enabled early
event detection by proposing a learning formulation based on a structural SVM. Leveraging the
merits of Long Short-Term Memory (LSTM) network, Li et al. [33] introduced a joint classification
and regression network to forecast the occurrence of start and end of actions.
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In the meantime, with the development of action analytics, the video sources and application
scenarios are becoming more and more diverse and challenging. Early action analytics targets
home surveillance activities like drinking or waving hands. These videos are easy and cheap to
capture. Thus, the analysis of these simple indoor activities is the starting point of action analytics.
Due to the rapid development of Internet, video data from online media like YouTube [3, 54] are
easier to access. Recently, there are also several works aiming at collecting datasets in certain
fields like TV series [9], movies [28], and the Olympic Games [26]. The videos from Internet suffer
from camera motion, illumination variations, background clutter, and so on. Therefore, it requires
more robust feature representations to achieve high-quality action recognition and detection. In
addition, the launch of color-depth sensing cameras like Microsoft Kinect broadens the diversity
of video data modalities, as well as the application scenarios of human action analytics. As Kinect
provides a real-time algorithm to generate information of RGB, depth, IR, and skeletons, it becomes
an ideal source to support real-time algorithms and to be utilized on devices like robots or mobile
phones. Thus, researchers are encouraged to develop multi-modal action analytics.

2.2 Multi-Modal Action Analytics

In recent years, many algorithms have been designed for action analytics with a single modality.
For RGB videos, the two-stream architecture [52] is a classical structure for action recognition
and has become a backbone of many other approaches [14, 69]. For depth videos, action analytics
mostly relies on hand-crafted heuristics [42, 76], which typically extracts spatio-temporal features
from interest points to describe the local appearance. For skeleton-based action analytics, con-
ventional methods are designed to represent geometric relationships of body parts [58, 79]. In
References [11, 19, 53, 85], recurrent neural networks are utilized to model the temporal dynamics
automatically for skeletons and obtain competitive performance. More recently, graph convolu-
tional networks [75] are employed for skeleton-based action recognition to improve expressive
power and generalization capacity of deep video features.

Inspired by the fact that different modalities provide complementary information, there are
some works integrating multiple modalities to leverage the compensated feature learning. As a
compact human representation, poses are used as guidance to extract high-level activity informa-
tion and then improve action understanding [66]. With the advance in depth cameras, 3D skele-
tons, depth, and IR images are more available. Several works employ a kind of modality as auxiliary
data that are required in training and discarded in testing [38, 51]. Based on the assumption that
RGB and skeleton data share similar high-level feature spaces, a regularized LSTM is developed in
Reference [38] to enhance the feature learning from RGB sequences. Shi and Tim [51] proposed to
achieve action recognition from depth sequences by learning an RNN with privileged information
from skeletons. In addition, some works combine data from several modalities for both training
and testing. A chained multi-stream network [86] built on a Markov chain model is developed to
integrate appearance, motion and pose features. In Reference [18], Hu et al. found that features
from different channels (RGB, depth) share similar hidden structures and proposed a joint model
to explore the shared and specific features. The existing works illustrate that the introduction of
multiple cues from different modalities effectively improves the performance of action analytics.

2.3 Multi-Modal Activity Datasets

We have surveyed tens of well-designed action datasets that greatly improved the study of multi-
modal action analytics. A comparison with several datasets and PKU-MMD is given in Table 1.

CMU Mocap [8] is the early resource including skeletons for action recognition. Captured by the
motion capture system, it is able to provide accurate skeletons with a variety of human actions,
such as sports, human locomotions, interactions, and so on.
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Table 1. Comparison of Multi-modal Datasets

Datasets Classes Videos
Labeled

Instances
Actions

per Video
Trimmed Views Modalities

Temporal
Label

Year

CMU Mocap [8] 45 2,235 2,235 1 T 1 R/S No 2001

HDM05 [40] 130 2,337 2,337 1 T 1 R/S No 2007

MSR-Action3D [32] 20 567 567 1 T 1 R/D/S No 2010

CAD-60 [55] 12 60 60 1 T — R/D/S No 2011

MSR-DailyActivity [61] 16 320 320 1 T 1 R/D/S No 2012

ACT4 [7] 14 6,844 6,844 1 T 4 R/D No 2012

UTKinect-Action [74] 10 200 200 1 T 4 R/D/S No 2012

3D Action Pairs [42] 12 360 360 1 T 1 R/D/S No 2013

DML-SmartAction [1] 12 932 932 1 T 3 R/D No 2013

MHAD [41] 11 660 660 1 T 4 R/D/S No 2013

Multiview 3D Event [70] 8 3,815 3,815 1 T 3 R/D/S No 2013

Northwestern-UCLA [62] 10 1,475 1,475 1 T 3 R/D/S No 2014

UWA3D Multiview [45] 30 ∼900 ∼900 1 T 1 R/D/S No 2014

Office Activity [63] 20 1,180 1,180 1 T 3 R/D No 2014

UTD-MHAD [6] 27 861 861 1 T 1 R/D/S No 2015

TJU Dataset [35] 22 1,936 1,936 1 T 1 R/D/S No 2015

UWA3D Multiview II [44] 30 1,075 1,075 1 T 5 R/D/S No 2015

SYSU 3D HOI Set [18] 12 480 480 1 T 1 R/D/S No 2015

NTU RGB+D [49] 60 56,880 56,880 1 T 80 R/D/IR/S No 2016

G3D [2] 20 210 1,467 7 U 1 R/D/S Yes 2012

SBU Kinect interaction [78] 8 21 300 14.3 T/U 1 R/D/S Yes 2012

MSRC-12 [15] 12 594 6,244 ∼11 U — S Yes 2012

CAD-120 [56] 20 120 ∼1,200 ∼8.2 U — R/D/S Yes 2013

Compostable Activities [34] 16 693 2,529 3.6 U 1 R/D/S Yes 2014

Watch-n-Patch [72] 21 458 ∼2,500 2∼7 U — R/D/S Yes 2015

OAD [33] 12 59 ∼700 ∼12 U 1 R/D/S Yes 2016

PKU-MMD (Part I) 51 1,076 21,545 20.02 T/U 3 R/D/IR/S Yes 2017

PKU-MMD (Part II) 41 1,009 6,952 6.89 T/U 3 R/D/IR/S Yes 2018

R: color videos; S: skeletons; D: depth maps; IR: infrared images; T: trimmed videos; U: untrimmed videos.

HDM05 [40] is captured by an optical marker-based technology. It provides RGB videos and
skeletons, containing over 2,000 videos and 130 human actions.

MSR Action3D Dataset [32] is one of the earliest datasets that capture multi-modal data with
Kinect devices. This dataset is composed by instances chosen in the context of interacting with
game consoles like high arm wave, horizontal arm wave, hammer, and hand catch. The skeleton
data are provided with 3D locations of 20 joints with 15 fps.

CAD-60 [55] and CAD-120 [56] are a series of multi-modal datasets for action recognition and
detection, respectively. The camera views are not fixed for actors. Compared to CAD-60, CAD-120
provides extra labels of temporal locations. However, the two datasets are limited in the number
of video samples.

ACT4 [7] is a large dataset designed to facilitate practical applications in real life. The action
categories in ACT4 mainly focus on the activities of daily livings.

Multiview 3D Event [70] and Northwestern-UCLA [62] datasets start to use multi-view configu-
ration to capture videos, which is followed in the collection of many succeeding datasets.
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Table 2. The Desirable Properties of the PKU-MMD Dataset

Properties Features

Large Scale
Extensive action categories
Massive samples for each class

Diverse Modality
Three camera views
Sufficient action variations
Multi-modality (RGB, depth, IR, etc.)

Wide Application
Trimmed clips for recognition

Continuous videos for detection
Inner analysis of context-related actions

SYSU 3D HOI Set [18] focuses on human-object interactions. The involved motions and the ap-
pearance of objects are highly similar. More inter-subject variations are observed due to more
participants, making the dataset more challenging.

NTU RGB+D Dataset [49] is a state-of-the-art large-scale benchmark for action recognition with
sufficient data modalities. It illustrates a series of evaluation protocols and provides valuable ex-
perience for large-scale data collection.

G3D [2] is designed for real-time action detection in gaming containing synchronized videos.
As the earliest activity detection dataset, most sequences of G3D contain multiple actions in a
controlled indoor environment with a fixed camera, and a typical setup for gesture-based gaming.

MSRC-12 [15] is a gesture/action dataset only with 3D skeleton data captured by a Kinect sensor.
The dataset comprises 594 sequences collecting from 30 people performing 12 gestures. It contains
information about when a particular gesture should be detected.

Watch-n-Patch [72] and Compostable Activities [34] are the datasets consisting of the continuous
sequences to learn high-level action co-occurrence and temporal relations. They consist of moder-
ate number of action instances. The dataset is recorded in different environments under different
views.

OAD [33] is a new dataset targeting online action detection and forecasting. Fifty-nine videos
describing daily activities are captured by Kinect v2 devices. This dataset defines several criteria
for online action detection.

However, as the quick development of deep learning-based action analytics, these datasets are
not able to satisfy the demand of data-driven algorithms. Therefore, we collect PKU-MMD dataset
to overcome their drawbacks from the following perspectives in Table 2.

3 THE PKU-MMD DATASET

In this section, we first describe the details of PKU-MMD and then define the evaluation protocols
on the dataset.

3.1 Overview of the Dataset

PKU-MMD is our new large-scale dataset focusing on multi-modal action analytics, including ac-
tion recognition and action detection. The dataset is captured via the Kinect v2 sensors from mul-
tiple viewpoints with recording ratio set as 25 fps, which collect color images, depth maps, IR
sequences, and human skeleton joints synchronously. RGB videos are recorded in the provided
resolution of 1920 × 1080. Depth maps are sequences of 2D depth values in millimeters. To main-
tain all the information, we apply lossless compression for each individual frame. The resolution
of each depth frame is 512 × 424. IR sequences are also collected and stored frame by frame in the
resolution of 512 × 424. Skeleton information consists of 3D locations of 25 major body joints as in
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Table 3. A Detailed List about 51 Action Categories in the PKU-MMD Dataset

Taxonomy Detailed Actions$

Health

related

touch head (headache) touch neck (neckache) touch back (backache)

touch chest (stomachache/heart pain)

Home

related

brush teeth comb hair wipe face

drink water eat meal/snack

Dressing

related

put on glasses put on jacket put on a hat/cap

take off glasses take off jacket take off a hat/cap

Interaction

with people

handshake∗ push other person∗ hug other person∗

kick other person∗ punch/slap other person∗ pat on back of other person∗

point finger at the other person∗ give something to other person∗

Interaction

with items

drop write read

pick up take a selfie tear up paper

type on a keyboard play with phone/tablet check time (from watch)

use a fan (with hand or paper) make a phone call/answer phone point to something with finger

put something inside pocket∗ take out something from pocket∗

Human

locomotion

bow clap throw

salute fall hop (one foot jumping)

sit down stand up cheer up

jump up kick something hand waving

rub two hands together cross hands in front (say stop)

$ The actions not shown in Part II are marked with ∗.

Reference [49] for each detected and tracked human body in the scene. Since some skeletal joints
are not available or untracked due to occlusion, we further provide the confidence of each joint as
an appendix (i.e., 0 for untracked joints, 1 for noisy joints, and 2 for good joints). For action types,
our dataset covers health-related actions, home-related actions, dressing-related actions, and so
on. Table 3 illustrates more details on action categories.

Overall, the scale of PKU-MMD is 2,085 untrimmed sequences with approximately 6.2 million
frames. The videos are about 4,000 minutes in total with over 28,000 temporally localized action
clips. More specifically, it consists of two subsets under different settings and with different lev-
els of difficulty in action understanding. Figure 2 gives some sample videos from PKU-MMD. The
untrimmed videos can be utilized for action detection. Meanwhile, we can get trimmed clips ac-
cording to annotations of action localization and use them for action recognition.

Part I: In this subset, we collect 1,076 long continuous action sequences, each of which lasts about
3 to 4 minutes and contains approximately 20 action instances. We invite 66 distinct subjects for
Part I. Each subject takes part in 4 daily action videos and 2 interactive action videos. There are
51 action classes, all of which are shown in Table 3. We use three cameras at the fixed angles and
heights to capture different horizontal views synchronously. The horizontal angles of each camera
are −45◦, 0◦, and +45◦ as shown in Figure 3(a), with a height of 120cm.

Part II: In this subset, we collect 1,009 untrimmed videos, each of which lasts about 1 to 2 minutes
and contains about 7 action instances. For this subset, we invite 13 subjects and each subject takes
part in 4 daily action videos. Part II shares 41 action labels with Part I, as shown in Table 3. In
addition, we consider action relations in the untrimmed videos. For example, we design an action
sequence of touching head, falling down, and touching chest to imitate the scene in medical care
and another of reading, checking time and answering phone as the office scene. We set surrounding
cameras around subjects as shown in Figure 3(b). The horizontal angles of each camera are −120◦,
0◦, and +120◦ with the height of 120 cm. Compared with Part I, this subset is relatively challenging
in the following aspects.
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Fig. 2. Sample videos from Part I and Part II from PKU-MMD, respectively. Part II is more challenging for

action understanding due to dense actions with shorter intervals, concurrent actions (e.g., answering phone

in the red box and picking up in the blue box), and heavy occlusion.

Fig. 3. Camera settings for Part I and Part II of the PKU-MMD dataset, respectively. The cameras in Part I

are set in the front of the subject, while in Part II, we have the subject surrounded by cameras.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 2, Article 41. Publication date: May 2020.



41:10 J. Liu et al.

Fig. 4. Statistics for action interval and action clip duration of PKU-MMD.

• Short action intervals. As shown in Figure 2, there is long idle time between action clips in
the video from Part I (Figure 2(a)), but action clips in Part II are close to each other (Figure 2(b)),
leading to quite short action intervals. In Figure 4(a), we statistically show the number of frames
between adjacent action clips for Part I and Part II, respectively. We can see that in Part I, most
action intervals are about 350 frames, while in Part II, most action intervals about 100 frames. The
shorter action intervals result in less clear action boundaries, making it challenging to locate the
start and end points for each action accurately. Besides, the duration of most actions in Part I is
about 100 frames and that in Part II is about 50 frames according to Figure 4(b).
• Concurrent actions. It is common for people to perform multiple actions at the same time

in realistic scenarios. Thus, in Part II, we take concurrent actions into account. For example, the
man is answering phone and picking up in the meanwhile as shown in Figure 2(b). It is harder for
the classifiers to learn patterns for a specific action from the mixture of several actions. However,
in Part I, each action clip only contains a single action and it is much easier to train an action
classifier from such data.
• Heavy occlusion. As shown in Figure 3, the camera settings for Part I and Part II are quite

different. The viewpoints in Part II lead to heavier occlusion, because the cameras on each side
always capture human actions from back. It will especially influence the quality of skeleton data.
We show sample frames and corresponding skeletons below each RGB image in Figure 5. Note
that for better visualization, we rotate the skeletons to the front, which is to fix the X -axis to be
parallel to the vector from “left shoulder” to the “right shoulder.” The original skeletons and rotated
skeletons are shown in green and blue, respectively. It is observed that skeletons in Part II suffer
from more noises due to heavier occlusion, as in the right and left figures in Figure 5(b).

3.2 Evaluation Protocols

We now introduce standard evaluation protocols for all the reported results on our benchmark.
We first illustrate the data split settings, and then the evaluation criteria for action recognition and
detection are given, respectively.

3.2.1 Dataset Splits. In our benchmark, we suggest two data splits (i.e., cross-subject and cross-
view) for the scenarios of action recognition and detection, respectively. The summary of data
splits for Part I and Part II is given in Table 4. For simplicity, we use “CS” for cross-subject and
“CV” for cross-view.

Cross-Subject Evaluation: Cross-subject evaluation aims to test the ability to handle intra-
class variations among different actors. For Part I, 57 subjects are chosen to be training samples and
9 for testing. In action recognition, there are 19,114 action clips for training and 2,730 for testing,
respectively. In action detection, there are 944 untrimmed video samples for training and 132 for
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Fig. 5. Sample frames from different viewpoints in Part I and Part II, respectively. Below each RGB frame

are its corresponding skeletons. The viewpoints in Part II lead to heavier occlusion and thus introduce more

skeleton noises. We show the original skeletons in green and rotated skeletons in blue.

Table 4. Data Splits for Part I and Part II, Respectively

Splits Attributes
Part I Part II

Train Test Train Test

Cross-subject
#Subjects 57 9 10 3

#Action clips 19,114 2,730 5,339 1,613
#Untrimmed videos 944 132 775 234

Cross-view
View #1, #3 #2 #1, #2 #3

#Action clips 14,545 7,299 4,622 2,330
#Untrimmed videos 717 359 671 338

testing, respectively. For Part II, 10 subjects are chosen to be training samples and 3 for testing. In
action recognition, there are 5,339 action clips for training and 1,613 for testing, respectively. In
action detection, there are 775 untrimmed sequences for training and 234 for testing, respectively.

Cross-View Evaluation: Cross-view evaluation aims to test the robustness in terms of trans-
formation (e.g., translation, rotation). For Part I, the videos from Camera #1 and #3 are chosen
as the training set, and those from Camera #2 are as the testing set. In action recognition, there
are 14,545 and 7,299 action clips for training and testing, respectively. In action detection, there
are 717 untrimmed videos for training and 359 for testing. For Part II, the videos from Camera #1
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and #2 are chosen as the training set, and those from Camera #3 are as the testing set. In action
recognition, there are 4,622 and 2,330 action clips for training and testing, respectively. In action
detection, there are 671 untrimmed videos for training and 338 for testing.

3.2.2 Evaluation Criteria. For all the evaluation on PKU-MMD, the action recognition results
are reported with the classification accuracy in percentage. In the following, we explain the crite-
rion for action detection.

An action proposal generated in the process of action detection is defined as positive, when
the overlapping ratio between the proposed interval I and the ground-truth interval I ∗ exceeds a
threshold θ , which is given as

|I ∩ I ∗ |
|I ∪ I ∗ | > θ , (1)

where I ∩ I ∗ denotes the intersection of the predicted and ground-truth intervals and I ∪ I ∗ denotes
their union. We then use mean average precision (mAP) to evaluate the performance of action
detection.

Mean average precision is a common evaluation protocal using the information of confidence for
ranked detection results. Its definition is based on the interpolated average precision [13], which is
able to remove jiggles on the precision-recall curve. The interpolated precision pinterp at a certain
recall level r is formulated as

pinterp (r ,θ ) = max
r ′ ≥r

p (r ′,θ ), (2)

where p (r ,θ ) is the precision-recall function under threshold θ . Then the mean average precision
is defined by

mAP(θ ) =
1

N

N∑

n=1

1

an

an∑

k=1

pinterp (rnk ,θ ), (3)

where N is the total number of action classes, for each class with type id of n, there are an action
occurrences and rnk is the recall result of the kth ranked detections.

4 COMPARISON STUDY

In this section, we present the comparison study through a series of evaluations on our benchmark
to show differences of different modalities and action analytics methods. To show the characteris-
tics for each subset more clearly, we separately evaluate two subsets, while they can be combined
together in practice if needed. Our experiments are in terms of action recognition and action detec-
tion. We first describe the video representations adopted in our experiments. Then the employed
action analytics methods for each task are introduced. We carry out preliminary analysis on the
recognition and detection performance on each modality, as well as multi-modal fusion results.
The analysis also serves to illustrate the feasibility and challenges in multi-modal action analytics
and call on new explorations.

The modalities involved in our experiments include the following: RGB (R), optical flow (OF),
depth (D), infrared radiation (IR), and skeletons (S). We adopt dense flow in Reference [69] to
calculate optical flow from RGB images for its efficiency.

4.1 Action Recognition

Here we show the performance of Part I and Part II on action recognition, the goal of which is to
assign a label of a well-trimmed video clip.
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Table 5. The Number of Neurons in LSTM and BLSTM Networks

LSTM BLSTM
l1 l2 l3 bl1 f c1 bl2 f c2 bl3

S 100 110 200 100 × 2 100 110 × 2 110 200 × 2
R/F/D/IR 200 220 400 100 × 2 100 110 × 2 110 200 × 2

4.1.1 Recognition Methods. To evaluate the performance of different modalities, we adopt the
following methods. We do not perform temporal downsampling for all modalities in action recog-
nition. Note that STA-LSTM [53], TPN [19], VA-LSTM [82], and ST-GCN [75] are only for skeletons.

TSN: Temporal Segment Network [69] is an efficient and remarkable approach for RGB-based
action recognition. Based on the BN-Inception network, it enables robust feature learning with
frames from each temporal segment. We leverage TSN on the evaluation of RGB, optical flow,
depth, and IR images.

STA-LSTM: Spatio-temporal attention LSTM network [53] consists of a spatial attention model
to automatically select discriminative joints and a temporal attention model to allocate importance
to different frames.

TPN: Temporal perceptive network [19] embeds a convolutional subnetwork to enhance the
feature extraction from local temporal dynamics. This method effectively improves the accuracy
in large-scale action recognition on skeleton data.

VA-LSTM: View-adaptive network [82] aims to transform skeletons adaptively towards a suit-
able observation viewpoints. The model is more generalizable to multi-view skeleton data.

ST-GCN: Spatio-temporal graph convolutional network in Reference [75] learns the spatial and
temporal patterns with automatically with greater expressive power and stronger generalizable
capability, and shows impressive performance on action recognition with skeleton data.

LSTM/BLSTM: The merits of LSTM layers allow the network to exploit the history information
and model the temporal dynamics efficiently. Here we adopt LSTM (with unidirectional recurrent
layers denoted as l ) and BLSTM (with bidirectional recurrent layers denoted asbl ) to achieve action
recognition on each modal data. Our LSTM network is composed of three layers, i.e., l1 − l2 − l3.
Similarly, the structure of our BLSTM network is bl1 − f c1 − bl2 − f c2 − bl3, where f c represents
the fully connected layer. The detailed configurations of LSTM/BLSTM networks are shown in Ta-
ble 5, which gives the number of neurons for each layer. Motivated by Reference [10], we extract
deep features from convolutional layers for RGB, optical flow, depth, and IR data and feed them
to LSTM/BLSTM networks. Specifically, each frame is finally represented by a vector of dimen-
sion 1,024 from the layer global pool of BN-Inception network [69], which is well trained for each
corresponding modality. Then the features are fed into the following recurrent layers.2

4.1.2 PKU-MMD Recognition Benchmarks. We evaluate each method with corresponding
modal data, including single-modal recognition and multi-modal recognition.

Single-Modal Recognition: Table 6 shows the results for single-modal recognition with dif-
ferent methods on Part I and Part II, respectively. We get some similar observations in both parts.
For the modalities of RGB, optical flow, depth, and IR, we can see that based on the deep features
from TSN [69], LSTM and BLSTM effectively improve the recognition results in most cases due to
better temporal modelling. For skeleton data, STA-LSTM [53] and TPN [19] achieve competitive
recognition accuracy, and ST-GCN [75] achieves the best performance in most cases. For a specific
classifier, the recognition accuracy from optical flow is the highest. It is because the actions in

2For more detailed structures, please refer to our website: https://struct002.github.io/PKUMMD/.
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Table 6. Recognition Accuracy (%) of Different Modalities in PKU-MMD

and NTU Using Different Methods

Partition Setting Cross-subject (Part I) Cross-view (Part I)
Methods R OF D IR S R OF D IR S
TSN [69] 79.0 87.9 79.0 73.2 – 84.1 90.3 76.9 68.0 –
STA-LSTM [53] – – – – 87.2 – – – – 90.8
TPN [19] – – – – 85.7 – – – – 93.7
VA-LSTM [82] – – – – 84.1 – – – – 92.5
ST-GCN [75] – – – – 84.1 – – – – 92.0
LSTM 84.0 90.0 85.1 80.4 86.7 88.6 92.1 81.2 80.1 94.0
BLSTM 84.8 90.1 86.2 80.6 86.4 88.6 93.1 83.7 80.1 94.6

Partition Setting Cross-subject (Part II) Cross-view (Part II)
Methods R OF D IR S R OF D IR S
TSN [69] 57.2 70.7 51.3 51.3 – 56.3 74.3 42.4 41.9 –
STA-LSTM [53] – – – – 44.3 – – – – 28.6
TPN [19] – – – – 46.9 – – – – 29.7
VA-LSTM [82] – – – – 50.0 – – – – 34.5
ST-GCN [75] – – – – 48.2 – – – – 35.8

LSTM 60.1 70.4 47.5 52.9 44.3 59.3 72.6 49.6 43.3 28.1
BLSTM 66.4 71.9 56.5 58.0 44.4 63.8 74.4 51.5 49.2 26.3

Partition Setting Cross-subject (NTU) Cross-view (NTU)
Methods R OF D IR S R OF D IR S
TSN [69] 74.3 85.2 70.5 67.8 – 76.4 87.2 63.6 60.0 –
STA-LSTM [53] – – – – 73.4 – – – – 81.2
TPN [19] – – – – 75.3 – – – – 84.0
VA-LSTM [82] – – – – 79.4 – – – – 87.6
ST-GCN [75] – – – – 81.5 – – – – 88.3

LSTM 81.8 87.6 82.8 77.9 71.9 88.5 93.3 79.0 73.3 82.0
BLSTM 80.5 87.4 82.7 77.1 71.4 86.4 91.5 78.1 72.0 81.9

PKU-MMD are motion related and optical flow provides pixel-level motion vectors. Meanwhile,
we obtain the best results from BLSTM for almost all modalities, since it is able to utilize both
history and future frames.

It is also noticeable that the results of Part II are much inferior than those of Part I. We further
conduct comprehensive experiments under different configurations to analyze the difficulties of
each subset. Table 6 presents the cross-subject results with Part I and Part II, respectively. Table 7
further shows the cross-view results on RGB and skeletons in different train/test splits. It is ob-
served that action recognition performance with Part II is much worse than Part I under all the
settings, illustrating that Part II is more challenging compared to Part I. On the one hand, it is
more difficult for classifiers to learn patterns for a specific label due to concurrent actions. On the
other hand, the occlusion caused by viewpoints represents a real-world challenge, especially the
noises in skeletons. It is reflected in the performance with skeleton data in Part II (see Table 6 and
Table 7), which is only about 26–50% in terms of accuracy.

To further illustrate the characteristics of PKU-MMD dataset on action recognition, we also con-
duct experiments on the well-known NTU dataset [49] with state-of-the-art methods. The results
in Table 6 show that for Part I in PKU-MMD, action recognition performance on RGB and opti-
cal flow are comparable with that on the NTU dataset, while the performance on depth, infrared

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 2, Article 41. Publication date: May 2020.



A Benchmark Dataset and Comparison Study for Multi-modal Human Action Analytics 41:15

Table 7. Recognition Accuracy (%) for Different Cross-view Splits with RGB

and Skeletons from our PKU-MMD Dataset

Dataset Part I Part II

Train/Test Split #1#2/#3 #1#3/#2 #2#3/#1 #1#2/#3 #1#3/#2 #2#3/#1

Methods R S R S R S R S R S R S

TSN [69] 81.2 – 84.1 – 82.5 – 56.3 – 46.0 – 50.4 –

STA-LSTM [53] – 86.6 – 90.8 – 83.3 – 28.6 – 48.8 – 33.7

TPN [19] – 86.4 – 93.7 – 86.2 – 29.7 – 49.5 – 33.7

VA-LSTM [82] – 81.4 – 92.5 – 82.7 – 34.5 – 40.3 – 29.7

ST-GCN [75] – 87.9 – 92.0 – 88.1 – 35.8 – 30.8 – 30.2

LSTM 86.1 83.9 88.6 94.0 86.6 85.6 59.3 28.1 51.6 40.3 52.7 29.0

BLSTM 89.0 86.4 88.6 94.6 90.2 86.5 63.8 26.3 52.6 46.5 53.5 30.7

images, and skeletons are higher than that on the NTU dataset. It indicates that the difficulty in
action recognition on Part I is comparable with NTU, but we have depth, infrared images, and
skeletons in higher quality, which can benefit the exploration in 3D reconstruction or other re-
lated topics. However, the action recognition performance with Part II is much inferior to that on
NTU, which present new challenges in the task of action analysis. Besides, we also notice that,
different from PKU-MMD, LSTM and BLSTM achieve comparable performance on NTU, which is
mainly caused by shorter video length (about 300 frames/video) in NTU.

Multi-Modal Recognition: With the results from BLSTM for each modality, we combine the
multi-modal data by average fusion to utilize complementary information. That is, the probability
p∗ for being the cth class from video V can be formulated as

p∗ (c |V) =
1

|Ω |
∑

m∈Ω

pm (c |Vm ), (4)

where the superscript m indicates which modality the score is from, Ω is the set consisting of
the modalities taken into account, and V

m denotes the video representation of the corresponding
modality of video V. The results can be seen in Table 8. Compared with single-modal recognition,
each modality is able to contribute to improve the recognition performance.

4.2 Action Detection

4.2.1 Detection Methods. In action detection, we aim to not only recognize but also localize
the actions in the untrimmed video sequence. Here we introduce several approaches for action
detection. As action recognition, the features for RGB, optical flow, depth and IR data are extracted
from the global-pool layer of BN-Inception [69].

Sliding Window-based Methods (SW-X): Action detection can be achieved through recogniz-
ing and integrating sliding windows. The classifier is independent to the sliding window scheme.
In our experiments, we use STA-LSTM [53], TPN [19], LSTM, and BLSTM to classify the sliding
windows. The configurations of LSTM/BLSTM are the same as Table 5. For the sliding window-
based approaches, we utilize temporal downsampling with a stride as 5. We then split the long
sequences into action windows with the size as 10. Each window is recognized with different clas-
sifiers. Adjacent windows that share the same action label are linked to get the detection results.
Note that STA-LSTM [53], TPN [19] are only employed for skeleton data.

Joint Classification Regression RNN (JCRRNN): Li et al. [33] proposed a Joint Classifica-
tion Regression RNN that implements frame-level real-time action detection. Though the network
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Table 8. Recognition Accuracy (%) (BLSTM)

with Multi-modal Fusion

Modalities
Part I Part II

CS CV CS CV
R + OF 91.5 95.1 74.2 74.8

R + D 88.4 90.8 65.1 61.9
R + IR 85.2 89.2 66.0 63.0
R + S 90.2 96.2 63.6 61.3
OF + S 92.9 97.1 71.3 72.9
OF + IR 90.5 93.2 72.7 70.9
OF + D 92.5 94.2 73.6 71.5
S + D 91.2 95.8 58.0 49.2
S + IR 89.1 95.5 58.0 47.9
IR + D 87.1 86.9 61.9 53.0
R + OF + D 92.3 95.0 73.0 74.1
R + OF + IR 90.9 94.7 73.2 73.7
R + OF + S 93.3 97.3 73.5 73.2
R + OF + D + S 94.4 97.5 73.1 72.7
R + OF + IR + S 93.0 96.9 74.5 72.5
R + OF + D + IR + S 93.7 96.8 73.3 70.7

is designed for skeleton data, we can also feed the deep features of other modalities to get the
detection results.

Untrimmed Net: Wang et al. [68] developed a joint action recognition and detection frame-
work. The model can be optimized in an end-to-end manner and has shown superior performance
on famous THUMOS14 [64] and ActivityNet [3].

In Table 9, we also include the results from papers [29–31, 37, 60] that cite our conference ver-
sion [36] and use Part I to evaluate their methods. The results are taken from the corresponding pa-
pers directly. Note that not all modalities under all settings are taken into account in these methods.

4.2.2 PKU-MMD Detection Benchmarks. In the detection task, we evaluate each method of
single-modal detection and multi-modal detection on Part I and Part II, respectively.

Single-Modal Detection: Table 9 and Table 10 show detection results in terms of mAP on Part
I and Part II, respectively. The results from the two subsets are quite different. Compared with
mAP results of sliding window-based methods on Part I (Table 9), we obtain much lower mAP on
Part II (Table 10) due to poor recognition performance for each window. Meanwhile, the concur-
rent actions in Part II can cause missing detections easily (Figure 6(a)). And short intervals lead to
many false positives, especially at the connections between adjacent actions (Figure 6(b)), which
further reduces the precision of action proposals and then mAP results. Though JCRRNN [33] out-
performs SW-BLSTM greatly in Part I, SW-BLSTM achieves higher results than JCRRNN in Part II.
It is mainly because JCRRNN fails to regress the start and end points of an action when action
boundaries are less clear. Besides, the performance with UntrimmedNet [68] is also far from being
satisfactory, since UntrimmedNet is based on frame-level action classification, the occlusion and
concurrent actions bring challenges to get a well-trained classifier. Overall, the results in Table 10
illustrate that Part II constitutes a great challenge to the state of the art and is more difficult than
Part I for action detection.

Multi-Modal Detection: We evaluate the capability of detecting actions in the multi-modal
scenario with SW-BLSTM. We try different combination of different modalities, and the mAP
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Table 9. MAP Results (%) of Different Modalities Using Different Methods on Part I

Partition Setting Cross-subject (Part I) Cross-view (Part I)

Methods θ R OF D IR S R OF D IR S

SW-STA-LSTM [53]
0.1 – – – – 47.5 – – – – 48.0

0.5 – – – – 25.4 – – – – 27.8

SW-TPN [19]
0.1 – – – – 60.2 – – – – 71.0

0.5 – – – – 30.4 – – – – 40.0

SW-LSTM
0.1 59.7 66.6 65.2 53.2 68.4 63.0 64.3 58.0 48.2 76.4

0.5 30.4 25.4 34.8 25.6 38.2 30.5 20.1 26.3 19.5 44.9

SW-BLSTM
0.1 62.1 66.7 65.8 54.2 69.0 65.3 63.6 58.9 49.4 77.5

0.5 33.3 24.4 35.8 25.2 36.3 31.4 22.8 26.6 19.6 44.2

JCRRNN [33]
0.1 71.5 81.6 73.4 61.2 52.2 76.9 87.3 74.0 57.9 53.9

0.5 53.8 66.8 57.9 42.8 35.5 61.5 74.2 57.6 40.2 38.0

CNN+Motion+Trans [30]
0.1 – – – – 92.2 – – – – 95.8

0.5 – – – – 90.4 – – – – 93.7

Trans RNN [60]
0.1 – – – – 84.2 – – – – 93.5

0.5 – – – – 74.3 – – – – 86.7

Skeleton Boxes [29]
0.1 – – – – 61.3 – – – – 94.5

0.5 – – – – 54.8 – – – – 94.2

HCN [31] 0.5 – – – – 92.6 – – – – 94.2

Graph Distillation [37]
0.1 88.0 82.6 87.2 – 85.7 – – – – –

0.5 80.1 74.7 79.2 – 78.4 – – – – –

Results of References [29–31, 37, 60] are from their papers.

Table 10. MAP Results (%) of Different Modalities Using Different Methods on Part II

Partition Setting Cross-subject (Part II) Cross-view (Part II)

Methods θ R OF D IR S R OF D IR S

SW-STA-LSTM [53]
0.1 – – – – 5.7 – – – – 4.7

0.5 – – – – 2.2 – – – – 2.2

SW-TPN [19]
0.1 – – – – 11.7 – – – – 4.2

0.5 – – – – 3.3 – – – – 1.5

SW-LSTM
0.1 20.1 31.0 10.8 14.8 11.2 20.3 27.4 15.9 13.5 4.2

0.5 6.8 13.7 2.9 4.6 3.2 6.9 10.0 5.2 4.2 1.5

SW-BLSTM
0.1 23.2 30.9 18.7 19.5 7.0 21.3 28.2 17.4 16.4 7.5

0.5 8.3 11.9 5.8 6.3 3.7 6.8 10.3 5.5 5.1 4.0

JCRRNN [33]
0.1 14.3 17.3 8.6 9.8 2.3 11.7 18.8 9.8 6.4 1.0

0.5 5.9 8.6 3.0 3.7 0.5 4.6 10.4 3.2 1.6 0.1

UntrimmedNet [68]
0.1 7.1 5.9 5.3 4.7 – 7.7 5.1 5.4 5.6 –

0.5 1.9 2.7 1.6 1.3 – 1.7 2.5 1.8 1.6 –

results under IoU θ = 0.5 are shown in Table 11. The introduction of additional modalities ef-
fectively improves mAP results, compared to single-modal detection.

4.3 Cross-dataset Study

In this subsection, we perform a cross-dataset study to show that PKU-MMD can be utilized to
support other datasets on action analytics. The experiments are conducted with skeleton data
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Fig. 6. Visualization of action detection results on Part II (BLSTM with RGB videos under the cross-subject

split).

Table 11. Fusion Results (SW-BLSTM) for Action

Detection in mAP (θ = 0.5) (%)

Modalities
Part I Part II

CS CV CS CV
R + OF 38.0 38.9 18.6 21.7
R + D 42.0 35.0 11.1 13.4
R + IR 35.6 31.6 12.6 12.4
R + S 45.0 48.6 13.1 13.9
OF + S 41.4 49.5 19.3 24.6

OF + IR 33.2 30.4 16.2 16.9
OF + D 39.4 34.2 14.6 18.5
S + D 60.7 45.1 9.1 8.6
S + IR 39.1 40.8 9.6 8.1
IR + D 36.3 28.3 10.0 9.6
R + OF + D 45.8 42.2 18.0 21.3
R + OF + IR 40.8 40.0 18.6 20.7
R + OF + S 48.3 54.1 18.4 22.0
R + OF + D + S 51.6 53.1 18.2 21.2
R + OF + IR + S 48.1 51.4 19.1 20.9
R + OF + D + IR + S 49.6 49.8 16.5 19.0

for action recognition. We pretrain LSTM configured as in Table 5 with PKU-MMD Part I and
Part II and then fine-tune the network on the large NTU dataset [49] and small MSR Daily Activ-
ity dataset [61], respectively. We follow Reference [49] to split the NTU dataset with cross-subject
and cross-view protocols and follow Reference [61] to use samples from the first five subjects as
training and the rest as testing for the MSR dataset. The results are given in Table 12. The results
on the NTU dataset with pretraining are comparable to training from scratch with random ini-
tialization, but pretraining speeds up the convergence early in training, as shown in Figure 7. It is
consistent with the conclusion in Reference [16] that training from scratch can be comparable with
pretraining counterparts when there are sufficient training data. On the small-scale MSR dataset,
however, PKU-MMD pretraining effectively improves action recognition performance. We observe
that pretraining with Part I brings more improvement than Part II. It is mainly because the larger
number of samples in Part I leads to a more generalizable model. The results in Table 12 and Fig-
ure 7 illustrate that the features learned on PKU-MMD can be well transferred to the MSR dataset.
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Table 12. Action Recognition Accuracy (%) on Testing

Data of NTU and MSR Datasets

Acc. (%) NTU (CS) NTU (CV) MSR

random init 71.9 82.0 68.1
pretrain with Part I 72.1 81.6 72.5

pretrain with Part II 71.9 81.9 69.4

Fig. 7. Learning curves of action recognition accuracy on the training and testing sets, respectively.

Therefore, PKU-MMD can help speed up convergence for the large-scale dataset and compensate
for the lack of training data when the dataset is small.

4.4 Discussions

We provide further discussions based on the experiment results to address multi-modal action
analytics.

What are the characteristics for each modal data? We investigate this question through
the analysis from Figure 8, which shows the average precision in action recognition with BLSTM
(Part I) on each action class for each modality. We find that optical flow usually dominate the
recognition performance and get the highest accuracy on most of the action categories, which is
consistent with the results in Table 6. It is mainly because the optical flow provides pixel-level hu-
man motions, increasing the discriminations of action. With appearance information, RGB is good
at distinguishing object-related actions, such as reading. Skeletons are able to recognize actions
involved obvious human motion, such as bowing. Another advantage of skeleton data is that their
training time is much less than other modalities due to the low dimension. Depth data are able
to well recognize most human actions in our PKU-MMD dataset. An interesting point is that the
performance with depth information sometimes can be even better than that with RGB data under
the cross subject setting, which can be observed from Table 6 and Table 9. It is probably because
the appearance information is hidden by depth information, leading to a more unified distribu-
tion between training and testing data, and then the model can well fit the testing samples. For
IR images, however, we found that the data noises lead to degradation in performance compared
with other modalities, indicating that the exploitation on action analytics from IR information is
in demand.

More modalities, better performance? In general, the more modalities are involved, the bet-
ter performance we obtain, since complementary information can be utilized to compensate miss-
ing features in the single modal data. However, with simply an average fusion scheme, we found
that the introduction of IR always reduces the performance. This is probably because IR images do
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Fig. 8. Average precision of BLSTM on each action class for each modality in action recognition (Part I,

cross-subject).

not contain additional information to the combination of RGB and depth in the daylight environ-
ment. And employing all the available modalities does not necessarily give the most satisfactory
results, illustrating that it is challenging to fully explore the complementary information of differ-
ent modalities. Nevertheless, we still believe there is much potential to boost the performance of
action analytics with multi-modal data.

5 CONCLUSION

In this article, we release a large-scale multi-modal benchmark (PKU-MMD) for human action ana-
lytics. To make our dataset more practical, we record two subsets under different settings and thus
with different levels of difficulty in action understanding. Compared with easy Part I, Part II is more
challenging due to short action intervals, concurrent actions, and heavy occlusion. We introduce
two applications for PKU-MMD: trimmed action recognition and untrimmed action detection on
both subsets, respectively. To give a comparison study, we review several existing methods pro-
posed for action analytics. Extensive experiments are conducted to evaluate each method on our
benchmark. We further analyze the performance from different modalities as well as their fusion
results. Our studies show that the multi-modal action analytics is far from mature compared with
RGB-based action analytics. And our dataset brings new challenges to state-of-the-art methods.
We hope our benchmark facilitate further research and serve the community in the field of human
action analytics.
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